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1 What is numerical analysis?
Much of today’s science and engineering depends on large-scale calculations performed
with computers. These calculations find solutions or approximate solutions to mathe-
matical models and enable scientists and engineers to predict behaviours of interest. A
prime example is the weather: PDE models are used to predict the weather based on
recent observations. The accuracy of the predictions depend on many things, including
the accuracy of the numerical solution to the PDEs. In this unit, we explore the
theoretical basis for these numerical methods, especially their reliability and efficiency.
The name given to this subject is Numerical Analysis.

Numerical analysis is half theory and half practice. We want to prove that algorithms
work with rigorous mathematical analysis and to implement them. An essential part of
the course will be for you to implement and use the methods yourself.

1.1 Examples
Quadratic-equation formula

The following formula for the two roots of a quadratic equation is well known:

x± = −b±
√
b2 − 4ac

2a

gives the solutions x of

a x2 + b x+ c = 0, for given a, b, c.

For a pure mathematician, this could be the end of the story: Python provides built-in
routines for evaluating such expressions and hence we can input a, b, c and find the
roots.

It is not always so simple: computers work with finite-precision arithmetic and
only store finitely many different numbers. Any number that is too long (π,

√
2,...

written in base 10) or too big (above 10308 or too small 10−323 on my machine) causes
problems. We focus on numbers that are too long: in Python and many other computing
environments, real numbers are stored to 16-significant figures. That is, any number
with more than 16 digits (excluding the exponent) in base 10 is rounded (by chopping
or choosing the nearest) to 16 digits. In Python, typing

import numpy as np
np.pi,

we see 3.141592653589793. Of course, computers work in base 2 and the principle there
is similar.

At first, this appears like a minor irritation as the error caused is so small relative
to the size of π. However, when performing long computations in finite-precision
arithmetic, the effects can accumulate to cause a catastrophic loss of accuracy. For
example, consider computing x± in the case b = 106, a = 10−3 and c = 10−3:

x± = −106 ±
√

1012 − 4× 10−6

2× 10−3 .
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Working to 16-significant figures, the square root evaluates to ±106 because 1012 − 4×
10−6 = 1012 to 16 s.f. (s.f. denotes significant figures). Hence, the computed values of
the roots are xc± = −109, 0. In fact, the exact answers are x± = −109,−10−9 (to 16
s.f.). There are no correct digits in the xc+. Indeed,

the absolute error in x+ is
∣∣∣x+ − xc+

∣∣∣ ≈ 10−9,

but
the relative error in x+ is |x+ − xc+|

|x+|
≈ 1.

Using the relative error, we scale the error relative to what we are trying to compute
and find the error in computing x+ is unacceptably large.

How can the quadratic-equation formula be evaluated accurately in this case? No,
the answer is not “Get a bigger computer or use more digits in your calculations”.
Numerical analysis provides ways of improving algorithms so they are less sensitive
to the effects of rounding error, without the need to change computing environment.
Indeed, now that single-processor computing speed is no longer increasing dramatically,
it is becoming more important to exploit good algorithms. Sixteen figures is enough
to represent the answer and the algorithm can be adjusted to avoid the problematic
cancellation −106 +

√
1012 + neglected and find the correct answer in Python. In this

case, we note that one of the roots x± is evaluated accurately and the second root can
be computed accurately by exploiting the identity x+x− = c/a for the product of the
roots.

Linear equations

To convince you that the previous example is not overly contrived, consider the linear
system of equations: [

ε 1
0 1

]
x = b, b :=

[
1
1

]
for a known small number 0 < ε� 1. We are interested in determining x ∈ R2 and it
is easy to show that

x =
[
0
1

]
.

Imagine that there has been rounding error and the vector b is actually stored as
[1 + δ, 1]T (the T denotes transpose):[

ε 1
0 1

]
x = b, b :=

[
1 + δ

1

]
. (1.1)

Again solving the linear system, we find

x =
[
δ/ε
1

]
.

In the case that 0 < ε � δ (ε is much smaller than δ), there is a large change to
the solution x. This system and its solution x is highly sensitive to small changes in
input data (as modelled by δ). This is a simple example of an ill-conditioned system
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of equations and these arise widely in mathematical modelling and are particularly
hard to solve accurately using numerical methods. The perturbation represented by δ
always occurs in numerical simulations due to rounding error.

In contrast to the quadratic-equation example, the ill-conditioning here is fun-
damental to the underlying equations and is not a consequence of the method of
solution. Numerical analysis can help identify numerically stable algorithms that
are less susceptible to the effects of rounding error, but, if there is an instability in
the underlying model, even a good algorithm will produce wrong answers. This is
why well posedness (existence, uniqueness, and continuity of solutions with respect to
parameters) is studied in modules on differential equations.
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Figure 1: Linear interpolation of f(x) =
√
x at x0 = 1/4 and x1 = 1. Left: f plotted

next to the linear interpolant p1. Right: plot of the error |f(x)− p1(x)|.

2 Interpolation
Problem Suppose that a function f : [a, b]→ R is specified only by its values f(xi)
at the N + 1 distinct points x0, x1, . . . , xN . How can we approximate f(x) for all x?

In polynomial interpolation, we do this by constructing a polynomial pN of degree
N such that

pN(xi) = f(xi), i = 0, . . . , N. (2.1)

2.1 Linear interpolation
Linear interpolation is the case N = 1. We are given two points x0 6= x1 and values
f(x0) and f(x1). The interpolant p1(x) is simply the straight line given by

p1(x) = f(x0) +
(
f(x1)− f(x0)

x1 − x0

)
(x− x0). (2.2)

You should check that p1 is linear and p1(xi) = f(xi) for i = 0, 1.

Example 2.1. Approximate f(x) =
√
x by linear interpolation at x0 = 1/4 and x1 = 1.

By Eq. (2.2),

p1(x) =
√

1
4 +

1−
√

1/4
1− 1

4

(x− 1
4

)
= 2

3x+ 1
3 .

Figure 1 shows graphs of f(x) and p1(x) for x0 = 1/4 and x1 = 1, and the error at
each point. Figure 2 shows the same graphs for x0 = 0 and x1 = 3/4.The error in the
second example is much bigger! Let us explain why.

Corollary 2.1 (Rolle’s theorem). Let f : [a, b]→ R be smooth with f(a) = f(b). There
exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. This is a special case of the mean-value theorem using f(a) = f(b).

To analyse the error in linear interpolation, set

e(x) := f(x)− p1(x).

Note that e(x0) = 0 = e(x1).
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Figure 2: Linear interpolation of f(x) =
√
x at x0 = 0 and x1 = 3/4. Left: f plotted

alongside the linear interpolant p1. Right: plot of the error |f(x)− p1(x)|. Notice the
range of the y-axis for the error in comparison to Figure 1.

Theorem 2.1. Suppose that f : [x0, x1] → R is smooth. For all x ∈ (x0, x1), there
exists ξ ∈ (x0, x1) such that

e(x) = f ′′(ξ)
2 w2(x), where w2(x) := (x− x0)(x− x1). (2.3)

Proof. Fix x ∈ (x0, x1) and note that w2(x) 6= 0. Define

g(t) := e(t)− e(x)
w2(x)w2(t) for t ∈ [x0, x1]. (2.4)

Observe that
g(x0) = e(x0)− e(x)

w2(x)w2(x0) = 0− 0 = 0.

Similarly g(x1) = 0.
Also,

g(x) = e(x)− e(x)
w2(x)w2(x) = e(x)− e(x) = 0.

The smoothness assumption of f implies smoothness of g and Rolle’s theorem
applies. Hence, applying Rolle’s theorem twice,

∃η1 ∈ (x0, x), η2 ∈ (x, x1) such that g′(η1) = 0 = g′(η2).

Now consider g′(t):

g′(t) = e′(t)− e(x)
w2(x)w

′
2(t).

Hence, Rolle’s theorem implies again and

∃ξ ∈ (η1, η2) such that g′′(ξ) = 0. (2.5)

By Eq. (2.4),

g(t) = f(t)− p1(t)− e(x)
w2(x)(t− x0)(t− x1).

Since p1 is a linear function, p′′1(t) ≡ 0 and so

g′′(t) = f ′′(t)− 0− 2 e(x)
w2(x) .
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As g′′(ξ) = 0 by Eq. (2.5),

0 = f ′′(ξ)− 2 e(x)
w2(x)

and finally this can be rearranged to show that Eq. (2.3) holds.

We note that ξ in Eq. (2.3) depends on x and we do not know it explicitly in general.
We only know that it exists. This makes the above formula for the error difficult to
use. To get around this, we replace the term involving ξ by something that is easier to
understand.

Definition 2.1. For any interval I and f : I → R, we define “the sup norm”∥∥∥f∥∥∥
∞,I

:= sup
x∈I

∣∣∣f(x)
∣∣∣.

Here, sup means supremum or least upper bound and, in many cases, it is the same
as finding the maximum of |f | on I.

Corollary 2.2. Under the assumptions of Theorem 2.1,

∥∥∥e∥∥∥
∞,[x0,x1]

≤ (x1 − x0)2

8
∥∥∥f ′′∥∥∥

∞,[x0,x1]
. (2.6)

Proof. From Theorem 2.1, for all x ∈ (x0, x1),

∣∣∣e(x)
∣∣∣ = |f

′′(ξ)|
2 |w2(x)|, for some ξ ∈ (x0, x1).

Also,
|w2(x)| = |(x− x0)(x− x1)| = (x− x0)(x1 − x).

Simple calculus (see Problem E2.1) shows that

|w2(x)| ≤ (x1 − x0)2

4 .

Hence,
|e(x)| ≤ (x1 − x0)2

8
∥∥∥f ′′∥∥∥

∞,[x0,x1]
.

This inequality also holds for x = x0 and x1 (since the left-hand side vanishes) and we
have derived Eq. (2.6).

The smoothness of f affects the quality of the approximation and we see that the
error is proportional to f ′′(ξ). The size of the derivatives of f is one way to quantify
the smoothness of a function. In Figure 1, f(x) =

√
x on [1/4, 1] and in Figure 2 the

interval is [0, 3/4]. Because f ′′(x) → −∞ as x → 0, ‖f ′′‖∞,[0,3/4] is infinite and the
error is much larger in the second example.

See Problem E2.4 for a computational example.
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Figure 3: Piecewise-linear interpolation (solid line is f ; dotted line is the piecewise-
linear interpolant). In this case, the mesh is y0 = 0, y1 = 1, y2 = 2 and y3 = 3.

Piecewise-linear interpolation

To get a (more) accurate approximation to f : [a, b] → R, we subdivide [a, b] into a
mesh of points

a = y0 < y1 < · · · < yJ = b

and use linear interpolation on each subinterval [yj−1, yj].
Let p1,J denote the piecewise-linear function on [a, b] that interpolates f at all the

points yj of the mesh and let hj := yj − yj−1. By Corollary 2.2,
∥∥∥f − p1,J

∥∥∥
∞,[yj−1,yj ]

≤ 1
8h

2
j

∥∥∥f ′′∥∥∥
∞,[yj−1,yj ]

.

Clearly, ∥∥∥f − p1,J

∥∥∥
∞,[a,b]

= max
j=1,...,J

∥∥∥f − p1,J

∥∥∥
∞,[yj−1,yj ]

.

Hence, in terms of the mesh width h := maxj=1,...,J hj,∥∥∥f − p1,J

∥∥∥
∞,[a,b]

≤ 1
8h

2 max
j=1,...,J

∥∥∥f ′′∥∥∥
∞,[yj−1,yj ]

= 1
8h

2
∥∥∥f ′′∥∥∥

∞,[a,b]
. (2.7)

Convergence is achieved as h→ 0 and the error is O(h2).
At the points yj , the function f is only required to be continuous! This convergence

analysis does not actually require f to be twice differentiable at yj : If all discontinuities
in f ′ are resolved by the mesh, we can deal with less smooth functions in piecewise
interpolation.

Example 2.2. Let f(x) = exp(x2) on [a, b] = [0, 1] and let yj = jh, j = 0, . . . , J , where
h = 1/J (this is called a uniform mesh). In Problem E3.1, you will write a program to
compute

eh := max
j=1,...,J

∣∣∣(f − p1,J)(zj)
∣∣∣

where zj := (yj−1 + yj)/2 (the midpoint of [yj−1, yj]). A discrete set of points is used
for the maximum instead of the whole interval, to allow easy computation. Results:
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h eh (eh)/(eh/2) bound(h)
1/8 2.60e-2 3.62 3.18e-2
1/16 7.19e-3 3.80 7.95e-3
1/32 1.89e-3 3.90 1.99e-3
1/64 4.85e-4 4.97e-4

To estimate the rate of convergence, we conjecture that eh = Chα. Then,

(eh)/(eh/2) = 2α.

The third column suggests α approaches 2. To prove this rigorously, note that

f ′′(x) = (4x2 + 2) exp(x2) ⇒
∥∥∥f ′′∥∥∥

∞,[0,1]
≤ 6 exp(1).

Hence, from Eq. (2.7),

eh ≤
∥∥∥f − p1,J

∥∥∥
∞,[0,1]

≤ 1
8h

2
∥∥∥f ′′∥∥∥

∞,[0,1]
≤ 3

4 exp(1)h2 =: bound(h).

Note how sharp the theoretical bound is (in the table)!

2.2 Degree-N interpolation
When f is smooth, better accuracy is possible by choosing the degree-N polynomial
that interpolates at N + 1 distinct points instead. Let PN denote the polynomials of
degree N or less.

Problem Given N + 1 distinct points x0, . . . , xN and values f(x0), . . . , f(xN), com-
pute a polynomial pN ∈ PN with the property that

pN(xi) = f(xi), i = 0, . . . , N. (2.8)

We finish this chapter with two theorems:

Theorem 2.2 (existence and uniqueness). Let x0, x1, · · · , xN be distinct points in
[a, b] and suppose f : [a, b] → R is continuous. Then, there exists a unique pN ∈ PN
satisfying pN(xi) = f(xi) for i = 0, . . . , N .

Proof. Let
Lj(x) :=

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

,

where ∏ denotes the product of each term. These are known as Lagrange basis functions
and are degree-N polynomials (i.e., Lj ∈ PN). Note that Lj(xk) = δjk (the Kronecker
delta function), with δjk = 0 if j 6= k and δjk = 1 if j = k. Define

pN(x) =
N∑
j=0

f(xj)Lj(x).

Then, evaluating at x = xi, we have

pN(xi) =
N∑
j=0

f(xj)δij = f(xi).

9
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This is a degree-N interpolant of f and we have proved existence.
To show uniqueness, let p, q ∈ PN both satisfy Eq. (2.8). Then p, q agree at N + 1

distinct points and r := p− q is a degree-N polynomial with N + 1 distinct roots. This
can only happen if r ≡ 0 and the polynomials p and q are identical.

The following theorem generalises Theorem 2.1 to general N . We assume the points
are well ordered so that xi < xi+1.

Theorem 2.3. Suppose the conditions of Theorem 2.2 hold and that f is smooth.
Then, for all x ∈ [x0, xN ], there exists ξ ∈ (x0, xN) such that

(f − pN)(x) = f (N+1)(ξ)
(N + 1)! wN+1(x).

where wN+1(x) = (x− x0)× · · · × (x− xN).

Proof. Not covered.

Notice that now derivatives of orderN+1 determine the quality of the approximation.
It is easy to show that wN+1(x) = O(hN+1) if |xi−xj| ≤ h. Hence, if f is (N +1)-times
continuously differentiable, ‖f − pN‖∞,[x0,xN ] = O(hN+1).

Care is needed to apply high-degree polynomial interpolation, especially with
uniformly spaced points; see Figure 4.

2.3 Newton’s divided-difference formulae
Newton provided an elegant way of writing interpolation formulae, which is especially
useful when adding more interpolation points. Let’s derive his divided differences
and the associated formulae for polynomial interpolation. We approximate a function
f : R→ R.

One data point We are given (x0, f(x0)) and the constant interpolation function is
p0(x) = f(x0).

Two data points Given a second point (x1, f(x1)), we wish to update the interpola-
tion function by increasing the polynomial degree. We write

p1(x) = p0(x) + A1(x− x0),

where A1 is a coefficient to be determined. Notice that p1(x0) = f(x0) for
any choice of A1; we automatically satisfy the first interpolation condition. To
determine A1, apply the second interpolation condition p1(x1) = f(x1), to find

A1 = f(x1)− p0(x)
x1 − x0

= f(x1)− f(x0)
x1 − x0

.

This quantity is Newton’s first divided-difference and usually denoted f [x0, x1]
(or f [x1, x0] as order does not matter here). The linear interpolant is p1(x) =
f(x0) + f [x0, x1](x− x0).

10
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Figure 4: The solid line shows the interpolant pN ∈ PN of f(x) = 1/(25x2 + 1) based
on N + 1 uniformly spaced points on the interval [−1, 1]. Note how the oscillations near
the end points become wilder as N is increased. The difficulty with this choice of f(x)
is its derivatives, which become larger as roughly speaking each derivative increases by
a factor of 25 and Theorem 2.3 requires the derivatives to be well behaved.
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Three data points Add another data point and build the degree-two interpolant
p2(x) by adding to the already-known degree-one interpolation. Write

p2(x) = p1(x) + A2(x− x0)(x− x1)

for some A2 to be determined. Notice that p2(x) satisfies the first two interpolation
conditions, and A2 is determined by p2(x2) = f(x2). That is,

f(x2) = p1(x2) + A2(x2 − x0)(x2 − x1)

so that

A2 = f(x2)− f(x0)− f [x0, x1](x2 − x0)
(x2 − x0)(x2 − x1) = f [x2, x0]− f [x0, x1]

(x2 − x1) =: f [x0, x1, x2],

which is the second Newton divided-difference. You should verify that permuting
[x0, x1, x2] leaves its definition unchanged. The quadratic interpolant p2(x) =
f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

Four data points The pattern continues. For example, if we add a fourth point
x4, f(x4), the degree-three interpolant is written

p3(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)
+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2),

where the Newton divided-difference is defined by

f [x0, . . . , xn] := f [x1, . . . , xn]− f [x0, . . . , xn−1]
xn − x0

,

which is invariant to permutation of its arguments.

12
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3 Numerical integration
Problem Given a function f : [a, b] → R, compute approximations of

∫ b
a f(x) dx

using only samples of f at some points in the interval [a, b].
Numerical integration is important since, for many functions f , the integral cannot

be found exactly, but point values of f are relatively easy to compute (e.g., f(x) =
exp(x2)). Initially, we work on a reference interval [a, b] = [0, 1] and consider first∫ 1

0
f(x) dx. (3.1)

We approximate this by quadrature rules of the form

Q(f) =
N∑
i=0

wif(xi) (3.2)

where xi are distinct points in [0, 1] and wi are some suitable weights. We study ways
to fix the xi and the wi independently of any particular choice of f , so that Eq. (3.2)
can be computed easily for any f . How to choose xi and wi?

Idea: Replace f with an interpolating polynomial. Polynomials are simple to integrate
and lead to easy-to-use quadrature rules with a set of weights wi for any given set of
points xi.

3.1 Newton–Cotes rules
Newton–Cotes over the interval [0, 1]:

Start with equally spaced points xi = i/N , i = 0, . . . , N, and find suitable weights wi.
We construct the rule (3.2) by integrating the degree-N interpolating polynomial pN (x)
for f at xi.

Two points: For N = 1, we have two points x0 = 0 and x1 = 1. Then (see §2), the
linear interpolant to f is

p1(x) = f(0) + (f(1)− f(0))x

and ∫ 1

0
p1(x) dx = f(0) + (f(1)− f(0))

∫ 1

0
x dx

= f(0) + 1
2(f(1)− f(0)) = 1

2
(
f(0) + f(1)

)
.

We have derived the trapezoidal or trapezium rule

Q1(f) := 1
2
(
f(0) + f(1)

)
. (3.3)

Here the weights w0 = w1 = 1
2 . It is called the trapezoidal rule because it approximates∫ 1

0 f(x) dx by the area of the trapezium under the straight line p1(x) that interpolates
f between 0 and 1. It is exact (i.e., Q1(f) =

∫ 1
0 f(x) dx) for any polynomial f of degree

1 (i.e., f ∈ P1), since in that case p1 = f by the uniqueness of the linear interpolant
(recall Theorem 2.2).

13
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0 1

f(0)
f(1)

Figure 5: The trapezoidal rule

Three points: For N = 2, we have three points x0 = 0, x1 = 1, and x2 = 1/2. Using
the Newton divided-difference form of the quadratic interpolant,

p2(x) = f(0) + f [0, 1]x+ f [0, 1, 1/2]x(x− 1).

Then, ∫ 1

0
p2(x) dx = f(0) + 1

2f [0, 1] + f [0, 1, 1/2]
∫ 1

0
(x2 − x) dx︸ ︷︷ ︸

=−1/6

= f(0) + 1
2
f(1)− f(0)

1 − 1
6
f [0, 1/2]− f [0, 1]

1/2− 1 ,

where f [0, 1/2] = 2(f(1/2)− f(0)) and f [0, 1] = f(1)− f(0). Thus,∫ 1

0
p2(x) dx = f(0) + 1

2(f(1)− f(0)) + 1
3
(
2f(1/2)− 2f(0) + f(0)− f(1)

)
= 1

6
[
f(0) + 4f

(
1
2

)
+ f(1)

]
.

This is called Simpson’s rule. We write

Q2(f) := 1
6f(0) + 4

6f
(

1
2

)
+ 1

6f(1), (3.4)

with weights w0 = w1 = 1
6 and w2 = 4

6 . This rule is exact for all f ∈ P2, since again in
that case p2 = f .

In general, Newton–Cotes quadrature rules are of the form

QN(f) :=
N∑
i=0

wif(xi)

where xi = i/N for i = 0, . . . , N , and the weights wi can be found by integrating
the degree-N interpolating polynomial. By writing pN(x) using the Lagrange basis
functions (see the proof of Theorem 2.2),

pN(x) =
N∑
i=0

Li(x)f(xi),

we can show that
wi =

∫ 1

0
Li(x) dx.

14
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Newton–Cotes rules over a general interval [a, b]: Suppose now we have a rule

Q(f) =
N∑
i=0

wif(xi) that approximates
∫ 1

0
f(x) dx. (3.5)

To approximate
∫ b
a f(t) dt, we make a change of variable x = t− a

b− a
and dx = 1

b−adt.
Then, t ∈ [a, b] is mapped to x ∈ [0, 1] and∫ b

a
f(t) dt =

∫ 1

0
(b− a)f

(
a+ x(b− a)

)
︸ ︷︷ ︸

=: g(x)

dx =
∫ 1

0
g(x) dx.

We now use Q(g) to approximate the right-hand side, to obtain the rule

Q[a,b](f) :=
N∑
i=0

wig(xi) = (b− a)
N∑
i=0

wif
(
a+ (b− a)xi

)
. (3.6)

Notation. We use superscript [a, b] to denote a rule over [a, b]. We omit the
superscript for [0, 1]. The lowest-order Newton–Cotes rules on a general interval [a, b]
are

Q
[a,b]
1 (f) = b− a

2
(
f(a) + f(b)

)
, trapezoidal

Q
[a,b]
2 (f) = b− a

6

(
f(a) + 4f

(
b+ a

2

)
+ f(b)

)
, Simpson’s.

Example 3.1. Let us apply these to the integral of f(x) =
√
x over [1/4, 1]. Then

Q
[1/4,1]
1 (f) =

1− 1
4

2
(√

1/4 + 1
)

= 3
8

3
2 = 9/16 = 0.5625, trapezoidal

Q
[1/4,1]
2 (f) =

1− 1
4

6
(√

1/4 + 4
√

5/8 + 1
)

= 0.582785 (6 s.f.), Simpson’s.

The exact value ∫ 1

1/4

√
x dx = 2

3
[
x3/2

]1
1/4

= 7
12 = 0.583333 (6 s.f.),

so the absolute value of the error in Simpson’s rule is |0.582785− 0.583333| =
5.48 × 10−4, which is about 38 times smaller than the error in the trapezoidal rule
|9/16− 0.583333| = 2.083× 10−2.

Composite rules

As for the piecewise interpolation in §2, instead of increasing the accuracy of quadrature
by choosing higher-order interpolating polynomials, we can also split the integration
domain into subintervals by introducing a mesh and applying low-order rules on the
sub-intervals.

15
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Consider a general quadrature rule (e.g., from §3.1)

Q(f) =
N∑
i=0

wif(xi) that approximates
∫ 1

0
f(x) dx, (3.7)

for some N , weights wi and distinct points xi. To approximate
∫ b
a f(t) dt, we introduce

the mesh a = y0 < y1 < · · · < yJ = b and write
∫ b

a
f(t) dt =

∫ y1

y0
f(t) dt+

∫ y2

y1
f(t) dt+ · · ·+

∫ yJ

yJ−1
f(t) dt =

J∑
j=1

∫ yj

yj−1
f(t) dt.

Now use the quadrature rule given by Eq. (3.7) on each subinterval, to obtain the
approximation

∫ b

a
f(t) dt ≈

J∑
j=1

Q[yj−1,yj ](f) =
J∑
j=1

hj
N∑
i=0

wif(yj−1 + hjxi), (3.8)

where hj = yj − yj−1. The approximation Eq. (3.8) is known as the composite version
of Eq. (3.7).

As in the case of interpolation, we expect that accuracy will increase when the
mesh width maxj hj → 0.

Example 3.2 (composite trapezoidal rule).

Q
[a,b]
1,J (f) :=

J∑
j=1

Q
[yj−1,yj ]
1 (f) =

J∑
j=1

hj
2
(
f(yj−1) + f(yj)

)
. (3.9)

For a uniform mesh, hj = h := (b− a)/J , j = 1, . . . , J , this can be written compactly
as

Q
[a,b]
1,J (f) := h

f(a)
2 +

J−1∑
j=1

f(yj) + f(b)
2

.
Example 3.3 (composite Simpson’s rule).

Q
[a,b]
2,J (f) :=

J∑
j=1

Q
[yj−1,yj ]
2 (f) =

J∑
j=1

hj
6
(
f(yj−1) + 4f(mj) + f(yj)

)
, (3.10)

where the midpoints mj = yj−1 + yj
2 . For a uniform mesh, this can again be written

more compactly as

Q
[a,b]
2,J (f) = h

6

f(a) + 2
J−1∑
j=1

f(yj) + 4
J∑
j=1

f(mj) + f(b)
.

Please implement the general formulae Eq. (3.9) and Eq. (3.10) (see Problems E4.2
and E4.3), so that we can apply the rules on any mesh.

16
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3.2 Error analysis
Non-composite rules over [0, 1]

Given a rule

Q(f) :=
N∑
i=0

wif(xi) that approximates I(f) :=
∫ 1

0
f(x) dx, (3.11)

we define the error in the quadrature rule to be

E(f) := I(f)−Q(f) . (3.12)

A way into the analysis is via the following concept.

Definition 3.1 (DOP). The rule Q(f) in Eq. (3.11) has degree of precision (DOP)
d ∈ N if

E(xr) = 0 for all r ∈ N with 0 ≤ r ≤ d and E(xd+1) 6= 0.

Example 3.4 (trapezoidal rule). Q1(f) = 1
2(f(0) + f(1)) and E1(f) := I(f)−Q1(f).

r xr I(xr) Q1(xr) E1(xr)

0 1 1 1
2 · 1 + 1

2 · 1 = 1 0
1 x 1

2
1
2 · 0 + 1

2 · 1 = 1
2 0

2 x2 1
3

1
2 · 0 + 1

2 · 1 = 1
2 −1

6

Hence the DOP of the trapezoidal rule is 1.

Example 3.5 (Simpson’s rule). Q2(f) = 1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
and E2(f) := I(f)−

Q2(f).

r xr I(xr) Q2(xr) E2(xr)

0 1 1 1
6(1 · 1 + 4 · 1 + 1 · 1) = 1 0

1 x 1
2

1
6(1 · 0 + 4 · 1

2 + 1 · 1) = 1
2 0

2 x2 1
3

1
6(1 · 0 + 4 · (1

2)2 + 1 · 1) = 1
3 0

3 x3 1
4

1
6(1 · 0 + 4(1

2)3 + 1 · 1) = 1
4 0

4 x4 1
5

1
6(1 · 0 + 4(1

2)4 + 1 · 1) = 5
24 − 1

120

Hence the DOP of Simpson’s rule is 3.

Q1 is found by integrating p1 and it is not surprising that its DOP is 1. Q2 is found
by integrating p2 and we’d expect a DOP of at least 2. A DOP of 3 is a surprise. In
fact, it turns out that for all N ∈ N the Newton–Cotes rule QN(f) is of DOP N if N
is odd and of DOP N + 1 if N is even.

Proposition 3.1. If Eq. (3.11) has DOP d, then

E(p) = 0, for all p ∈ Pd.

17
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Proof. For any f1, f2 : [0, 1]→ R and α, β ∈ R,
I(αf1 + βf2) = αI(f2) + βI(f2) and Q(αf1 + βf2) = αQ(f2) + βQ(f2), (3.13)

since I and Q are both linear transformations.
If p ∈ Pd, p is a polynomial of degree less or equal to d and can be written

p(x) =
d∑
r=0

arx
r, for some coefficients ar ∈ R.

Hence, using Eq. (3.13),

I(p)−Q(p) =
d∑
r=0

ar
[
I(xr)−Q(xr)

]
= 0,

since the DOP equals d.

With significant further work, we can show that, for the trapezoidal rule, there
exists ξ ∈ [0, 1] such that

E1(f) =
[
E1(x2)

2!

]
f ′′(ξ) = − 1

12f
′′(ξ), for all f ∈ C2[0, 1]. (3.14)

For p ∈ P1, p′′ ≡ 0 and E1(p) = 0 as expected from the DOP calculation.
For Simpson’s rule, there exists ξ ∈ [0, 1] such that

E2(f) =
[
E2(x4)

4!

]
f (4)(ξ) = − 1

2880f
(4)(ξ), for all f ∈ C4[0, 1].

Notice the error for Simpson’s rule depends on the fourth derivative of f while that
for the trapezoidal rule depends on the second derivative. Here Ck[a, b] is the set of
functions f : [a, b]→ R that are k-times continuously differentiable.

This leads to estimates over [a, b] instead of [0, 1] by a change of variables.
Example 3.6 (errors on [a, b]). The error for the trapezoidal rule over [a, b] is

E
[a,b]
1 (f) :=

∫ b

a
f(t) dt−Q[a,b]

1 (f).

To determine the error, we recall that∫ b

a
f(t) dt =

∫ 1

0
g(x) dx, Q

[a,b]
1 (f) = Q1(g),

from Eq. (3.6) with g(x) = (b− a)f(a+ (b− a)x). Now g′(x) = (b− a)2f ′(a+ (b− a)x)
and g′′(x) = (b− a)3f ′′(a+ (b− a)x). By Eq. (3.14),

E1(g) =
∫ 1

0
g(x) dx−Q1(g) = − 1

12g
′′(ξ) = − 1

12(b− a)3f ′′(η)

for some ξ ∈ [0, 1] and η := a+ (b− a)ξ. Then,

E
[a,b]
1 (f) = −(b− a)3

12 f ′′(η) for some η ∈ [a, b].

A similar calculation shows that the error for Simpson’s rule over [a, b] is

E
[a,b]
2 (f) :=

∫ b

a
f(t) dt−Q[a,b]

2 (f) = −(b− a)5

2880 f (4)(η) for some η ∈ [a, b].

Notice the fifth power of (b− a), which comes from the change of coordinates from t to
x.

18
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Composite Newton–Cotes rules

Let QN be a Newton–Cotes rule on [0, 1] with degree of precision d. The composite
version with J subintervals on [a, b] is (as in Eq. (3.8)):

Q
[a,b]
N,J (f) =

J∑
j=1

Q
[yj−1,yj ]
N (f).

The error can be expressed in terms of the error made in approximating the sub-integrals.

E
[a,b]
N,J (f) :=

∫ b

a
f(x) dx−Q[a,b]

N,J (f) =
J∑
j=1

[∫ yj

yj−1
f(x) dx−Q[yj−1,yj ]

N (f)
]

︸ ︷︷ ︸
=E

[yj−1,yj ]
N (f)

.

We have formula for E[a,b]
N for N = 1, 2, which lead to the following error estimates for

the composite trapezoidal and Simpson’s rule.

Example 3.7. Composite trapezoidal rule: If f ∈ C2[a, b], then there exists ηj ∈
[yj−1, yj] such that

E
[a,b]
1,J (f) = − 1

12

J∑
j=1

h3
jf

(2)(ηj) and
∣∣∣E[a,b]

1,J (f)
∣∣∣ ≤ b− a

12
∥∥∥f (2)

∥∥∥
∞,[a,b]

h2,

since ∑J
j=1 hj = b− a.

Example 3.8. Composite Simpson’s rule: If f ∈ C4[a, b], then there exists ηj ∈
[yj−1, yj] such that

E
[a,b]
2,J (f) = − 1

2880

J∑
j=1

h5
jf

(4)(ηj) and
∣∣∣E[a,b]

2,J (f)
∣∣∣ ≤ b− a

2880
∥∥∥f (4)

∥∥∥
∞,[a,b]

h4.

If f(x) fails to be sufficiently differentiable on all of [a, b], but is sufficiently
differentiable on subintervals of [a, b], we can apply error estimates there.

Example 3.9. Consider f(x) =
√
x on [0, 1], which has infinitely many derivatives

on subintervals that do not contain 0, but no bounded derivatives on [0, 1]. Consider
the composite trapezoidal rule for

∫ 1
0 f(x) dx on the mesh 0 = y0 < y1 < · · · < yJ = 1.

Then

E
[0,1]
1,J (f) =E[0,y1]

1,J (f) + E
[y1,1]
1,J (f)

=
(∫ y1

0
f(x) dx− h1

√
y1

2

)
− 1

12

J∑
j=2

h3
jf

(2)(ηj) . (3.15)

Now, we can estimate each of the terms in Eq. (3.15) separately (see Problem E4.3).
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3.3 Gaussian quadrature
The only examples of quadrature rules so far have been Newton–Cotes rules with
equally spaced points. Can we do better with other points?

To take advantage of symmetry and simplify calculations, we work on the interval
[−1, 1] rather than [0, 1] (which can of course be transformed onto [0, 1]). Let xi,
i = 0, . . . , N , be arbitrary points in [−1, 1], and let pN (x) be the degree-N interpolating
polynomial for a function f at these points. Consider the rule:

Q
[−1,1]
Gauss,N(f) :=

∫ 1

−1
pN(x) dx (3.16)

as an approximation to ∫ 1

−1
f(x) dx. (3.17)

This rule has DOP at least N . Can we do better with a clever choice of points? There
are 2N + 2 degrees of freedom (given by choice of xi and wi for i = 0, . . . , N) and d+ 1
conditions to achieve of a DOP of d. By equating the number of conditions to the
number of degrees of freedom, d+ 1 = 2N + 2, we hope that a DOP d = 2N + 1 can
be achieved by careful choice of xi and weights wi.
Example 3.10. One point (N = 0). To achieve a DOP of d = 2N + 1 = 1, we demand
that

Q(1) =
∫ 1

−1
1 dx = 2 and Q(x) =

∫ 1

−1
x dx = 0. (3.18)

As p0(x) is a constant, we must have p0(x) = f(x0) and
Q(f) = w0f(x0).

Then, w0 = 2 and x0 = 0 gives Eq. (3.18). Therefore, the one-point Gauss rule (or
midpoint rule), obtained by integrating the degree-0 interpolant p0 at x0 = 0 over
[−1, 1] is

Q
[−1,1]
Gauss,0(f) :=

∫ 1

−1
p0(x) dx = 2f(0).

This is exact when f = 1 and f = x, so it is a one-point rule with DOP = 1. Any
other one-point rule has only DOP = 0.
Example 3.11. Two points (N = 1). To achieve a DOP d = 2N + 1 = 3, we demand
that

Q(1) = 2, Q(x) = 0, Q(x2) = 2
3 , and Q(x3) = 0.

As
Q(f) = w0f(x0) + w1f(x1),

we must have w0 + w1 = 2 and w0x0 + w1x1 = 0 and w0x
2
0 + w1x

2
1 = 2/3 and

w0x
3
0 + w1x

3
0 = 0. By symmetry considerations, we must have x0 = −x1 and w0 = w1.

Then w0 = w1 = 1 and 2x2
0 = 2/3, so that x0 =

√
1/3. We obtain the two-point Gauss

rule

Q
[−1,1]
Gauss,1(f) :=

∫ 1

−1
p1(x) dx = f

( 1√
3

)
+ f

(
− 1√

3

)
.

Although only a two-point rule, its DOP is 2N + 1 = 3. Compare with the trapezoidal
rule which uses two points and has DOP only 1!
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Remark 3.1. • Composite Gauss rules can also be derived and are highly effective.

• High-frequency integrands, where f oscillates rapidly and where the derivatives
of f are large, are particularly difficult and arise, for example, in high-frequency
scattering applications (e.g., radio waves). This requires special techniques such
as Filon quadrature.

• Multivariate integrals are also important. For low-dimensional problems, simple
tensor-product rules (applying one-dimensional rules in each dimension) work
fine and our theory carries over easily. For high-dimensional integrals, the only
feasible methods currently are Monte Carlo-type methods.
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4 Nonlinear equations and IVPs for ODEs
Root-finding problem For a given function f : R→ R, determine a solution x of
the equation f(x) = 0. A solution x is known as a root of f .

For most f , there is no formula to give x explicitly and numerical methods are
required. For example, we may use the bisection method and choose an interval [a, b]
that contains the root by checking that f(a) > 0 and f(b) < 0 or vice versa (f changes
sign and has a root in the interval if it is continuous). Bisecting the interval and
choosing one subinterval where f changes signs at the endpoints gives a new interval
containing a root. Then, we iterate to find successively smaller intervals and better
approximations to the root. Given a suitable initial interval, this bisection method is
simple to apply but does not generalise easily to higher dimension. Instead, we focus
on fixed-point iterations.

4.1 Fixed-point iteration
Definition 4.1 (root, fixed point). We say x is a root of a function f if f(x) = 0, and
x is a fixed point (FP) of a function g if g(x) = x.

Often, root-finding problems can be replaced by fixed-point (FP) problems:

Example 4.1. Let f(x) = x3 + 4x2 − 10. There are many ways of posing this as a FP
problem g(x) = x.

• Let g1(x) = x− x3 − 4x2 + 10. Then, it is easy to check that g1(x) = x if and
only if f(x) = 0.

• Let g2(x) = 1
2(10 − x3)1/2 (positive root). For x > 0, g2(x) = x if and only if

f(x) = 0.

• Let g3(x) =
(

10
4+x

)1/2
, which is again a FP problem for the root-finding problem

for f .

Define the sequence xn by xn+1 = g(xn), given an initial condition x0. Under what
conditions does xn converge to a fixed point of g and can this be used for computing
the root? To answer this question, we have the fixed-point theorem. We use the term
‘smooth’ to mean the function has enough continuous derivatives.

Theorem 4.1 (convergence of FP iteration). Let g : [a, b]→ R be a smooth function.
Then, if (i) g(x) ∈ [a, b] for x ∈ [a, b] and (ii) |g′(x)| ≤ λ < 1 for x ∈ [a, b], then the
sequence xn defined by xn+1 = g(xn) for any x0 ∈ [a, b] converges to the unique fixed
point x of g. Further,

|xn − x| ≤ λn|x− x0|.

As well as convergence of the FP iteration, this theorem also gives existence and
uniqueness of the FP of g in [a, b].

Example 4.2. We look back at the fixed point problems in Example 4.1:

• g1(x) = x − x3 − 4x2 + 10 and [a, b] = [1, 2]. Then g1(1) = 6 and condition (i)
fails. The FP theorem does not apply to the iteration based on g1.
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• g2(x) = 1
2(10− x3)1/2 and

g′2(x) = 1
4
(
10− x3

)−1/2
(−3x2) = −3x2

4(10− x3)1/2 ,

g′2(2) = −3 · 4
4(10− 8)1/2 = −3√

2
≈ −2.12.

Hence, |g′2(x)| > 1 and (ii) fails. Again, the FP theorem does not apply.

• g3(x) =
(

10
4+x

)1/2
and

g′3(x) = 1
2

( 10
4 + x

)−1/2( −10
(4 + x)2

)
= −5

(4 + x)3/2
√

10
.

As g3 is decreasing and g3(2) =
√

10/6 ∈ [1, 2] and g3(1) =
√

2 ∈ [1, 2], we see
that (i) holds.
Further,

|g′3(x)| ≤ 5√
10

1
53/2 < 1 for x ∈ [1, 2].

Hence (ii) holds. The FP theorem applies and xn → x, the unique fixed point of
g, and the root of f : try it,

x1 = 1.5, x2 = g3(1.5) ≈ 1.3484, x3 ≈ 1.3674, x4 ≈ 1.365.
We see that the first three digits of xn have already converged and that f(1.365) =
−0.0038, indicating that 1.365 is close to the root of f .

For the proof of the FP theorem, we use the mean-value theorem from MA10207.
Theorem 4.2 (mean-value theorem). Let f : [a, b] → R be smooth. There exists
ξ ∈ (a, b) such that

f(b)− f(a)
b− a

= f ′(ξ).

Proof of Theorem 4.1. Let f(x) = g(x) − x. Then, by (i), f(a) = g(a) − a ≥ 0 and
f(b) = g(b) − b ≤ 0. By the intermediate-value theorem, there exists x ∈ [a, b] such
that f(x) = 0. In other words, there exists x ∈ [a, b] so that g(x) = x.

Consider the iteration xn+1 = g(xn) and the fixed-point equation x = g(x). Then,
xn+1 − x = g(xn)− g(x).

By the mean-value theorem, there exists ξ ∈ (a, b) so that
xn+1 − x = g′(ξ)(xn − x)

(as g is smooth). Now |g′(ξ)| ≤ λ and
|xn+1 − x| ≤ λ|xn − x|.

By a simple induction argument, this implies that |xn − x| ≤ λn|x0 − x|.
Finally, to show uniqueness, consider two fixed-points x, y of g. Then g(x) = x and

g(y) = y and hence
x− y = g(x)− g(y) = g′(ξ)(x− y).

As |g′(ξ)| ≤ λ, we see that
|x− y| ≤ λ|x− y|.

As λ < 1, it must hold that x = y and there is only one fixed point of g in [a, b].
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4.2 Newton’s method
The most well-known example of a fixed-point iteration is Newton’s method. This is
the iteration

xn+1 = g(xn), g(x) := x− f(x)
f ′(x) ,

where we assume that f ′(x) 6= 0. Clearly, f(x) = 0 if and only if g(x) = x. See Figure 6.

0 0.5 1 1.5

−2

0

2

4

6

x

y
xn

xn+1

Figure 6: The solid line shows y = f(x) and the dashed line is the tangent y =
f(xn) + (x − xn)f ′(xn) at x = xn. Newton’s method finds the point xn+1 where the
tangent line crosses the x-axes.

We show the FP theorem applies:

Theorem 4.3 (local convergence of Newton’s method). Suppose that f is smooth
and that f(x) = 0 and f ′(x) 6= 0. Then, there exists ε > 0 so that Newton’s method
converges to the root x of f if the initial guess x0 ∈ [x− ε, x+ ε].

Proof. With g(x) = x− f(x)/f ′(x), we have

g′(x) = 1− f ′(x)
f ′(x) + f(x)f ′′(x)

f ′(x)2 = 0 (4.1)

as f(x) = 0. As f and g are smooth, we have |g′(y)| ≤ λ := 1
2 for y ∈ [x − ε, x + ε]

by choosing ε sufficiently small. This gives (ii) of the FP theorem for a = x− ε and
b = x+ ε. For (i), note that

|g(y)− x| = |g(y)− g(x)| ≤ |g′(ξ)| |x− y| ≤ 1
2ε,

for any y ∈ [a, b] and some ξ ∈ (a, b) by the mean-value theorem. Clearly, then
g(y) ∈ [x − ε, x + ε] = [a, b] and (i) of the FP theorem holds. We conclude that
Newton’s method converges for initial conditions close (as given by ε) to x.

This theorem is problematic for the practitioner: it says that Newton’s method
converges if we can start close enough to the root! We don’t usually know the root and
we don’t usually know what ε is (i.e., what close enough means). However, Newton’s
method is often effective and, when it works, it is often very fast.

To quantify the speed of convergence, we define the order of convergence.
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Definition 4.2 (order of convergence). Consider a sequence xn approximating x. Let
en := |xn − x|, the error in the approximation. We say that xn converges to x with
order r if
(a) case r = 1 (linear convergence): en+1 ≤ Ken for all n ∈ N, for some K < 1;

(b) case r > 1: en+1 ≤ Kern for all n ∈ N, for some K > 0. The case r = 2 is known
as quadratic convergence.

One of the most useful tools in numerical analysis is Taylor’s theorem from MA10207:
Theorem 4.4 (Taylor’s theorem). Suppose that f : (a, b) → R is (m + 1)-times
continuously differentiable and suppose x0, x ∈ (a, b) with x0 6= x. Then,

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2 (x− x0)2 + · · ·+ f (m)(x0)

m! (x− x0)m +Rm(x),

where f (m) denotes the mth derivative of f and

Rm(x) = f (m+1)(ξ)
(m+ 1)! (x− x0)m+1,

for some ξ lying strictly between x and x0.
Theorem 4.5 (Newton’s method). If f is smooth and the initial guess x0 is sufficiently
close to the root x, then Newton’s method converges quadratically; that is, for some
K > 0,

en+1 = |xn+1 − x| ≤ K|xn − x|2 = Ke2
n,

where en = |xn − x| represents the error at step n.
Proof. Use Taylor’s theorem, to write

g(y) = g(x) + g′(x)(y − x) + 1
2g
′′(ξ)(y − x)2

for some ξ. We know from the calculation in Eq. (4.1) that g′(x) = 0 and hence

g(y)− g(x) = g(y)− x = 1
2g
′′(ξ)(y − x)2.

We know that the FP theorem applies in some interval [a, b] = [x− ε, x+ ε]. Hence,
if x0 ∈ [a, b] then so does xn for n ∈ N. Hence, it is enough to take y ∈ [a, b] and
also ξ ∈ [a, b]. Let K := 1

2 maxξ∈[a,b] |g′′(ξ)|, which is finite as g is smooth. Then, with
y = xn, we have ∣∣∣xn+1 − x

∣∣∣ ≤ K
∣∣∣xn − x∣∣∣2.

Example 4.3. Note that f(π) = 0 for f(x) = sin(x). Newton’s method is the iteration

xn+1 = xn −
sin(xn)
cos(xn) = xn − tan(xn).

Then, we take an initial condition x0 = 3 and

x1 = 3.142546543074278, x2 = 3.141592653300477, x3 = 3.141592653589793

by iterating x=x-tan(x). The example illustrates nicely quadratic convergence and
we see the number of correct digits increases rapidly (3, 10, 11 digits; the last one is
affected by rounding error).
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4.3 Solution of Initial-Value Problems (IVPs)
An IVP in standard form is a system of N differential equations:

dy

dt
= f(y, t), t ≥ 0, (4.2)

where f : RN+1 → RN is a given function and y(t) ∈ RN is the solution (for t > 0), to
be found subject to initial conditions of the form:

y(0) = y0, (4.3)

with initial data y0 ∈ RN given.

Example 4.4 (N = 1). Let f(y, t) = y2 and y0 = 1. Then

dy

dt
= y2, subject to y(0) = 1.

It is easy to see that the exact solution is y(t) = 1/(1− t). (Please check!) Usually the
exact solution is not so easy to find.

Not all problems are presented as Eq. (4.2).

Example 4.5. A simple pendulum is released from rest at angle α. The angle θ = θ(t)
of the pendulum satisfies the second-order equation:

d2θ

dt2
= g

a
sin θ, (4.4)

with g and a constants, subject to two initial conditions:

θ(0) = α,
dθ

dt
(0) = 0.

To put in standard form, introduce the new variable φ defined by φ = dθ/dt.
Then Eq. (4.4) becomes

dθ

dt
= φ,

dφ

dt
= g

a
sin θ.

which has the form Eq. (4.2) with

y =
[
θ
φ

]
and f(y, t) =

[
φ

g
a

sin θ

]
.
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4.4 Euler’s method
Given Eqs. (4.2) and (4.3), suppose we want to find y(t) for t = h for some small h.
Integrating each side of Eq. (4.2) over [0, h] gives

y(h)− y(0) =
∫ h

0

dy

dt
dt =

∫ h

0
f(y(t), t) dt (4.5)

The integral on the right-hand side is still unknown, but we can approximate it, for
example, by replacing the integrand by its value at t = 0 (which will be OK if h is
small). This yields

y(h) ≈ y(0) + h f(y(0), 0) = y0 + h f(y0, 0).

Everything on the right-hand side is known so we can compute an approximation
of y(h). Then y(2h) can be approximated by taking another step, and so on. This
is Euler’s Method, which computes a sequence of approximations Y j to y(tj), where
tj = jh, j = 1, 2, . . . by

Y 0 = y0

Y j = Y j−1 + h f(Y j−1, tj−1), for all j ≥ 1.

Example 4.6. Solve
dy

dt
= y2, y(0) = 1 (4.6)

using Euler’s method with h = 0.1; that is,

Y0 = y0 = 1
Y1 = Y0 + hf(Y0) = 1 + 0.1(12) = 1.1
Y2 = Y1 + hf(Y1) = 1.1 + 0.1(1.1)2 = 1.221.

Using the program, we approximate the solution of Eq. (4.6) at the time T = 1/2
for various h. The number of steps taken in Euler’s method is then n = T/h. Since we
know y(1/2) = 2 in this case (see Eq. (4.2)), we can find the error exactly.

Results:

n = T/h h |y(1/2)− Yn| Ratio
4 1/8 0.2338 0.59
8 1/16 0.1389 0.55
16 1/32 0.07696 0.53
32 1/64 0.04073

The ratios for the errors approach 1/2, which suggests that |Yn − y(t)| ∼= O(h) as
h→ 0. This is what we prove in the next section.

4.5 Convergence of one-step methods
We now restrict to the simplified version of Eq. (4.2) with N = 1 and f(y, t) = f(y):

dy

dt
= f(y) (4.7)
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subject to the initial condition
y(0) = y0. (4.8)

We shall consider “one step” methods of the form :

Y0 = y0

Yj = Yj−1 + hFh(Yj−1), for all j ≥ 1
(4.9)

where Fh is a function to be specified.
An example is Euler’s method, where Fh ≡ f . The error at the jth step is defined

to be
ej = y(tj)− Yj where tj = jh.

Definition 4.3. If y solves Eqs. (4.7) and (4.8), the local truncation error for Eq. (4.9)
is defined to be

τj = y(tj)− y(tj−1)
h

− Fh(y(tj−1)) , where tj = jh.

(i.e., hτj is the discrepancy when the true solution is substituted into Eq. (4.9)).

The convergence analysis proceeds by (i) bounding the error in the computed
solutions Yj in terms of the local truncation errors and (ii) estimating the local
truncation error using Taylor’s theorem.

Definition 4.4. A continuous function g : R→ R is called Lipschitz continuous with
Lipschitz constant L > 0 if

|g(Y )− g(Z)| ≤ L |Y − Z| for all Y, Z ∈ R.

Theorem 4.6. Suppose Fh is Lipschitz continuous with Lipschitz constant L indepen-
dent of h. Then the error ej in Eq. (4.9) satisfies

|ej| ≤ (1 + hL)|ej−1|+ h|τj|, j = 1, 2, 3, . . . . (4.10)

Moreover, for all fixed T and all n ∈ N satisfying nh ≤ T ,

|en| ≤
exp(TL)− 1

L
max
1≤j≤n

|τj|.

Proof. By definition of τj,

y(tj) = y(tj−1) + hFh(y(tj−1)) + h τj . (4.11)

So with ej = y(tj)− Yj, we have by subtracting Eq. (4.9) from Eq. (4.11):

ej = ej−1 + h
(
Fh(y(tj−1))− Fh(Yj−1)

)
+ h τj.

By the triangle inequality and the Lipschitz continuity of Fh,

|ej| ≤ |ej−1|+ h |Fh(y(tj−1))− Fh(Yj−1)|+ h |τj|
≤ (1 + hL)|ej−1|+ h |τj|.
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We see that Eq. (4.10) holds.
Now we shall prove by induction that, for all n ≥ 1,

|en| ≤ h
n−1∑
j=0

(1 + hL)j |τn−j|. (4.12)

Clearly (4.12) holds for n = 1, since the first equation in Eq. (4.9) implies |e0| = 0 and
(4.10) then gives |e1| ≤ h|τ1|. Now if (4.12) holds for some n, then (4.10) implies

|en+1| ≤ h
n−1∑
j=0

(1 + hL)j+1 |τn−j|+ h |τn+1|

= h
n∑
j=1

(1 + hL)j |τn+1−j|+ h |τn+1|

= h
n∑
j=0

(1 + hL)j |τn+1−j|.

Hence, (4.12) holds for n+ 1, and for all n by induction.

Finally, from (4.12) we have, since
n−1∑
j=0

qj = qn − 1
q − 1 ,

|en| ≤
(1 + hL)n − 1

L
max
1≤j≤n

|τj| =
exp(nhL)− 1

L
max
1≤j≤n

|τj|.

since 1 + x ≤ expx , for all x ≥ 0. And so the result follows for all nh ≤ T .

Remark: This theorem shows that the error in the approximation to the solution
computed by Eq. (4.9) at the point tn = nh will approach 0 if all the local truncation
errors τj, j = 1, . . . , n, approach 0 , as h→ 0.

Normally the local truncation error is estimated by applying Taylor’s theorem.

Example 4.7. Euler’s method is Eq. (4.9) with Fh(Y ) := f(Y ). If we assume that f
is Lipschitz continuous, then Theorem 4.6 applies and to show convergence we have to
estimate τj .

To do this we write (using the definition of τj):

τj = y(tj)− y(tj−1)
h

− f(y(tj−1)) = y(tj−1 + h)− y(tj−1)
h

− f(y(tj−1))

which we can expand via Taylor’s Theorem, with ξj ∈ (tj−1, tj), such that

τj =

(
y(tj−1) + h

dy

dt
(tj−1) + h2

2
d2y

dt2
(ξj)− y(tj−1)

)
h

− f(y(tj−1))

=
[
dy

dt
(tj−1)− f(y(tj−1))

]
+ h

2
d2y

dt2
(ξj).

Now, since y(t) is the solution of Eq. (4.7), we have, for all j = 1, . . . , n:

|τj| ≤
1
2 max
t∈[0,T ]

∣∣∣∣∣d2y

dt2
(t)
∣∣∣∣∣h.
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Hence if ∣∣∣∣∣d2y

dt2
(t)
∣∣∣∣∣ is bounded for t ∈ R, (4.13)

then Theorem 4.6 implies that

|en| ≤ C(T )h, (4.14)

where C(T ) is a constant depending on T ; and, for fixed T , we have convergence
(i.e., en → 0 as h→ 0).

Often one just assumes Eq. (4.13) and then concludes Eq. (4.14). To show Eq. (4.13)
rigorously, we need to make some assumptions on the given function f . In particular,
assume that

|f(x)| ≤M, x ∈ R,

and |f ′(x)| ≤ L, x ∈ R.

Then f is Lipschitz continuous with Lipschitz constant L, and by Eq. (4.7) and the
chain rule,∣∣∣∣∣d2y

dt2
(t)
∣∣∣∣∣ =

∣∣∣∣ ddtf(y(t))
∣∣∣∣ =

∣∣∣∣f ′(y(t))dy
dt

(t)
∣∣∣∣ = |f ′(y(t))||f(y(t))| ≤ LM.

4.6 Higher-order methods
We saw in Eq. (4.14) that Euler’s Method converges with O(h). This is relatively slow.
Higher-order methods can be found by employing higher-order quadrature in Eq. (4.5).
For simplicity, restrict to the case the case N = 1 and f(y, t) = f(y) again: Then
Eq. (4.5) is

y(h)− y(0) =
∫ h

0
f(y(t)) dt.

Instead of approximating the right-hand side by the one-point quadrature rule at 0,
consider using instead the trapezoidal rule, to obtain

y(h) ≈ y(0) + h

2

[
f(y(0)) + f(y(h))

]
. (4.15)

This motivates the Crank–Nicolson (or Trapezoidal) Method for solving Eq. (4.2):

Y0 = y0

Yj = Yj−1 + h

2

[
f(Yj−1) + f(Yj)

]
, for all j ≥ 1.

(4.16)

This method has a big disadvantage, since to find Yj from Yj−1 in Eq. (4.16), we have
to solve a (possibly nonlinear) equation

Yj −
h

2f(Yj) = Yj−1 + h

2f(Yj−1) .

If there are N differential equations, then there are N (possibly nonlinear) equations
to solve at each timestep. Despite this extra cost such “implicit” methods are often
preferred because of their good stability properties. (Stability is an advanced topic.)
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To estimate the local truncation error for Eq. (4.16), write the method as

Yj − Yj−1

h
= 1

2

[
f(Yj−1) + f(Yj)

]
.

Then using Eq. (4.7) and applying Taylor’s theorem to both y and dy/dt we get:

τj = y(tj)− y(tj−1)
h

− 1
2[f(y(tj−1)) + f(y(tj))]

= dy

dt
(tj−1) + h

2
d2y

dt2
(tj−1) + h2

6
d3y

dt3
(tj−1)− 1

2

[
dy

dt
(tj−1) + dy

dt
(tj)

]
+O

(
h3
)

=
(
dy

dt
+ h

2
d2y

dt2
+ h2

6
d3y

dt3
− dy

dt
− h

2
d2y

dt2
− h2

4
d3y

dt3

)
(tj−1) +O

(
h3
)

= − 1
12
d3y

dt3
(tj−1)h2 +O

(
h3
)
,

Hence, provided y has three bounded derivatives, |τj| = O(h2). Note that

d3y

dt3
= d2

dt2
f(y) = d

dt

(
f ′(y)y′

)
= d

dt

(
f ′(y)f(y)

)
= f ′′(y)(f(y))2 + (f ′(y))2f(y) .

Theorem 4.7. Suppose f is Lipschitz continuous with Lipschitz constant L independent
of h. If hL ≤ 1, then the error ej = y(tj) − Yj for the Crank–Nicolson method in
Eq. (4.16) satisfies

|ej| ≤ (1 + hL)2 |ej−1|+ h(1 + hL) |τj|, j = 1, 2, 3, . . . . (4.17)

Moreover, for all fixed T and all n ∈ N satisfying nh ≤ T ,

|en| ≤
exp(2TL)− 1

L
max
1≤j≤n

|τj|.

Proof. From Eq. (4.16),

Yj = Yj−1 + h

2 [f(Yj−1) + f(Yj)]

and by definition of the trunctation error

y(tj) = y(tj−1) + h

2
[
f(y(tj−1)) + f(y(tj))

]
+ hτj .

Hence, subtracting

|ej| =
∣∣∣∣ej−1 + h

2
[
f(y(tj−1))− f(Yj−1)

]
+ h

2
[
f(y(tj))− f(Yj)

]
+ hτj

∣∣∣∣
and, using the triangle inequality and Lipschitz continuity of f , we have

|ej| ≤ |ej−1|+
hL

2 |ej−1|+
hL

2 |ej|+ h |τj|.
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Rearrange as follows.(
1− hL

2

)
|ej| ≤

(
1 + hL

2

)
|ej−1|+ h |τj|

⇒ |ej| ≤
(

1− hL

2

)−1[(
1 + hL

2

)
|ej−1|+ h |τj|

]
.

ow, for any 0 ≤ x ≤ 1
2 ,

(1− x)−1 ≤ 1 + 2x (Check!)

and so for hL ≤ 1 (since (1− hL
2 )−1 ≤ 1 + hL and 1 + hL

2 ≤ 1 + hL)

|ej| ≤ (1 + hL)2|ej−1|+ h(1 + hL) |τj|.

The rest of the proof is Problem E7.3.

Higher-order explicit methods

There are ways of achieving higher order without using implicitness. Assume that we
have computed an approximation Yj−1 to y(tj−1). The improved Euler method uses
first the standard Euler method to get an approximation Ŷj to y(tj) and then the
trapezoidal rule to improve it:

Ŷj =Yj−1 + hf(Yj−1) “prediction” (4.18)

Yj =Yj−1 + h

2
[
f(Yj−1) + f(Ŷj)

]
“correction” (4.19)

This method fits into the framework of Theorem 4.6 because it can be written:

Yj = Yj−1 + h

2
(
f(Yj−1) + f

(
Yj−1 + hf(Yj−1)

))
,

which is of the form Eq. (4.9) with Fh(Y ) := 1
2f(Y ) + 1

2f
(
Y + hf(Y )

)
. The truncation

error is

τj = y(tj)− y(tj−1)
h

− 1
2
[
f(y(tj−1)) + f

(
y(tj−1) + h f(y(tj−1))

)]
,

and it turns out that |τj| = O(h2) for sufficiently smooth f (see Problem E7.2).
Moreover if f is Lipschitz then so is Fh, since

|Fh(Y )− Fh(Z)| ≤ 1
2 |f(Y )− f(Z)|+ 1

2 |f(Y + hf(Y ))− f(Z + hf(Z))|

≤ L

2 |Y − Z|+
L

2 |(Y + hf(Y ))− (Z + hf(Z))|

≤ L|Y − Z|+ hL

2 |f(Y )− f(Z)| ≤
(
L+ 1

2hL
2
)
|Y − Z|.

So under these conditions, Theorem 4.6 implies that the improved Euler method
converges with order O(h2), at the small additional cost of an extra evaluation of f at
each time step.

Higher-order methods can be built up using more evaluations of f . In general these
methods are called Runge–Kutta methods.
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Example 4.8. Let

K1 = f(Y0),

K2 = f(Y0 + h

2K1),

K3 = f(Y0 + h

2K2),

K4 = f(Y0 + hK3),

Y1 = Y0 + h

6 [K1 + 2K2 + 2K3 +K4].



(4.20)

This is an order-4 Runge–Kutta method (requires some analysis).
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5 Solution of linear system of equations: Ax = b

Problem For a given d × d matrix A and vector b ∈ Rd, find x ∈ Rd such that
Ax = b. If the entries of A are aij (row i, column j) and the entries of x and b are xj
and bj, this means

d∑
j=1

aijxj = bi, i = 1, . . . , d.

You have studied already row-reduction techniques. In numerical analysis, these
are developed in a way to improve numerical stability into the standard technique
“Gaussian elimination with partial pivoting”. This is an example of a direct method
and this means the solution x is found by a finite number of arithmetic operations.
Packages such as scipy.linalg use Gaussian elimination to find an LU factorisation.

Definition 5.1. A matrix P is a permutation matrix if each row and column has
exactly one non-zero entry equal to one; multiplication by a permutation matrix P in
PA permutes the rows of A.

A matrix L is lower triangular if Lij = 0 for i < j and unit lower triangular if
additionally Lii = 1. A matrix U is upper triangular if Uij = 0 for i > j.

The LU factorisation consists of a permutation matrix P , a unit lower-triangular
matrix L, and an upper-triangular matrix U such that PA = LU ; this can be found in
Python using P, L, U = scipy.linalg.lu(A). For example,

L =

 1 0 0
0 1 0

1/2 1/2 1

 , U =

4 −1 1
0 −1 2
0 0 −3/2

 , P =

0 1 0
0 0 1
1 0 0


is an LU factorisation of

A =

2 −1 0
4 −1 1
0 −1 2

 .
You should verify that PA = LU . The entries of L and U express the row reductions
normally performed in Gaussian elimination. We do not show how to compute L and
U in detail by hand. There are many matrix factorisation in numerical linear algebra
and this one is useful for solving linear systems of equations.

Example 5.1 (LU factorisation). To solve a linear system of equations with the LU
factorisation, substitute PA = LU into the linear system Ax = b:

PAx = LUx = Pb.

Let y := Ux. Given b ∈ Rd, we solve the triangular system

Ly = Pb, to find y ∈ Rd

and
Ux = y, to find x ∈ Rd.

We have replaced the problem of solve Ax = b by solving two much simpler linear
systems. Both matrices are triangular and their solution is easily found by forward or
backward substitution.
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We spend most of our time studying iterative methods, where x occurs as the
limit of approximations xn as n → ∞. In general, direct methods (such as the LU
factorisation or Gaussian elimination) are good for dense matrices (where aij 6= 0 for
nearly all i, j) and the complexity of such a linear solve is O(d3). If d is very large, it
may be impossible to store A in memory and to perform row reductions. On the other
hand, the matrix may be sparse (aij = 0 for many i, j) and it may be easy to compute
matrix–vector products Ax. In this case, iterative methods are valuable.

We will work with the following example of a sparse matrix throughout.
Example 5.2 (finite-difference matrix). Suppose that u is a smooth real-valued function
on [0, 1] and we want to approximate its second derivative based on evaluations on the
mesh xi = ih for some mesh spacing h = 1/(d+ 1). By Taylor’s theorem,

u(x+ h) = u(x) + hu′(x) + 1
2h

2u′′(x) + 1
6h

3u′′′(x) +O
(
h4
)
,

u(x− h) = u(x)− hu′(x) + 1
2h

2u′′(x)− 1
6h

3u′′′(x) +O
(
h4
)
.

Then,
u′′(x) = u(x+ h)− 2u(x) + u(x− h)

h2 +O
(
h2
)
.

By dropping the O(h2) term, we have a finite-difference approximation to the second
derivative. This can be used to find an approximate solution to the two-point boundary
value problem: for a given function f : [0, 1]→ R, find u(x) such that

−u′′(x) = f(x), u(0) = u(1) = 0.

Using the finite-difference approximation,

−


u′′(x1)
u′′(x2)

...
u′′(xd)

 = 1
h2A


u(x1)
u(x2)

...
u(xd)

+O
(
h2
)

for

A :=


2 −1
−1 2 −1

. . . . . . . . .
−1 2

 . (5.1)

Then u′′(x) = −f(x) gives 1
h2Au = f if we neglect the O(h2) term, for

f :=


f(x1)
f(x2)

...
f(xd)

 , u :=


u(x1)
u(x2)

...
u(xd)

 .
We have a linear system of equations that can be solved to determine an approximate
solution of the boundary-value problem.

Only the main and two off-diagonals of A are non-zero. All other entries are zero
and the matrix is sparse. We will use the finite-difference matrix A as a prototype
example as we develop iterative methods. The matrix is typical of the ones that arise
in the numerical solution of PDEs.
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5.1 Iterative methods
Suppose we wish to solve Ax = b for x ∈ Rd given a d× d matrix A and b ∈ Rd. Write
A = A1 − A2 so that

A1x = A2x + b.

This motivates the following iterative method: find xn+1 such that
A1xn+1 = A2xn + b.

When xn is known and A1 is well chosen, we easily find xn+1 and generate a sequence
x1,x2, . . . that we hope converges to the solution x. We can interpret this as a
fixed-point iteration and

xn+1 = g(xn), g(x) := A−1
1 (A2x + b),

where we assume the inverse matrix A−1
1 exists.

Example 5.3 (Jacobi). Let A1 denote the diagonal part of A and A2 = A1 − A =
−(L+ U) (for the lower- and upper-triangular parts L and U of A). Take for example

A =
[

2 −1
−1 2

]
, A1 =

[
2 0
0 2

]
, A2 =

[
0 1
1 0

]
.

The Jacobi iteration is [
2 0
0 2

]
xn+1 =

[
0 1
1 0

]
xn + b

or
xn+1 =

[
0 1/2

1/2 0

]
xn + 1

2b.

Notice how simple it is to evaluate the right-hand side given xn and b.
For the finite-difference example (5.1), the Jacobi method is

xn+1 = 1
2



0 1
1 . . . 1

. . . . . .
1

1

xn + 1
2b. (5.2)

Even when d is large, the right-hand side is cheap to compute and the matrix–vector
product is easy to evaluate without storing the sparse matrix.
Example 5.4 (Gauss–Seidel). Let A1 = D + L (the diagonal and lower-triangular
part) and A2 = −U . For the finite-difference matrix,

2
−1 2

−1 2
. . . . . .


︸ ︷︷ ︸

=A1

xn+1 =


0 1

. . . 1
1
. . .


︸ ︷︷ ︸

=A2

xk + b

This time a linear solve is required. As the matrix on the left-hand side is lower
triangular, this can be done efficiently to find xn+1.

We now develop some tools for understanding the convergence of iterative methods.
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5.2 Vector and matrix norms
To understand convergence of xn, we introduce a way to measure distance on Rd. It
turns out to be very convenient to have more than one measurement of distance.

Definition 5.2 (vector norm). A vector norm on Rd is a real-valued function ‖·‖ on
Rd such that

(a) ‖x‖ ≥ 0 for all x ∈ Rd,

(b) ‖x‖ = 0 if and only if x = 0,

(c) ‖αx‖ = |α| ‖x‖ for α ∈ R, and

(d) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rd (the triangle inequality).

The standard Euclidean norm ‖x‖2 := (xTx)1/2 ≡ (x2
1 + · · ·+ x2

d)
1/2 satisfies these

conditions and is a vector norm. The conditions (a–c) are easy to verify. The last one
follows from the Cauchy–Schwarz inequality, which says that xTy ≤ ‖x‖2‖y‖2 and so∥∥∥x + y

∥∥∥2

2
= (x + y)T(x + y) = xTx + 2xTy + yTx ≤

∥∥∥x∥∥∥2

2
+ 2

∥∥∥x∥∥∥
2

∥∥∥y∥∥∥
2

+
∥∥∥y∥∥∥2

2

=
(∥∥∥x∥∥∥

2
+
∥∥∥y∥∥∥

2

)2
.

We will make use of two more examples:

∥∥∥x∥∥∥
∞

:= max
j=1,...,d

∣∣∣xj∣∣∣, ∥∥∥x∥∥∥
1

:=
d∑
j=1

∣∣∣xj∣∣∣.
Don’t forget the absolute-value signs on the right-hand side! Verification of the norm
axioms is straightforward here.

These give different numbers and, for x = (−1, 1, 2)T, we get∥∥∥x∥∥∥
2

=
√

6,
∥∥∥x∥∥∥

1
= 4,

∥∥∥x∥∥∥
∞

= 2.

We also need to measure matrices. The obvious way to do this is to treat a d× d
matrix as a d2 vector and thereby inherit the norms defined for vectors. This does
not say anything about the multiplicative nature of matrices and so we develop the
following concept.

Definition 5.3 (matrix norm). A matrix norm ‖A‖ of a d×d matrix A is a real-valued
function on Rd×d such that

(a) ‖A‖ ≥ 0 for all A ∈ Rd×d,

(b) ‖A‖ = 0 if and only if A = 0,

(c) ‖αA‖ = |α| ‖A‖ for α ∈ R,

(d) ‖A+B‖ ≤ ‖A‖+ ‖B‖ (the triangle inequality) and

(e) ‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ Rd×d.
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Conditions (a–d) correspond to the ones for vector norms. The last, the sub-
multiplicative condition, relates to matrix products.

Vector norms lead naturally to a corresponding matrix norm, known as the
subordinate or operator norm.

Definition 5.4. The operator norm ‖A‖op with respect to a vector norm ‖x‖ is defined
by ∥∥∥A∥∥∥

op
:= sup

x6=0

‖Ax‖
‖x‖

.

Equivalently, because of condition (c),∥∥∥A∥∥∥
op

= sup
‖x‖=1

∥∥∥Ax
∥∥∥

(sup means least upper bound or roughly “the maximum”). The operator norm describes
the maximum stretch that can be achieved by multiplication by A.

Theorem 5.1. The operator norm ‖A‖op is a matrix norm

Proof. We show (e). As ‖A‖op = sup‖Ax‖/‖x‖, we have∥∥∥Ax
∥∥∥ ≤ ∥∥∥A∥∥∥

op

∥∥∥x∥∥∥ (5.3)

for any x ∈ Rd. Then, applying Eq. (5.3) twice,∥∥∥ABx
∥∥∥ ≤ ∥∥∥A∥∥∥

op

∥∥∥Bx
∥∥∥ ≤ ∥∥∥A∥∥∥

op

∥∥∥B∥∥∥
op

∥∥∥x∥∥∥.
Hence, ∥∥∥AB∥∥∥

op
= max
‖x‖=1

∥∥∥ABx
∥∥∥ ≤ ∥∥∥A∥∥∥

op

∥∥∥B∥∥∥
op
.

Let ‖A‖1 be the operator norm associated to the vector norm ‖x‖1, and ‖A‖∞ be
the operator norm associated to the vector norm ‖x‖∞.

Theorem 5.2. Let A be an d× d matrix. Then,

∥∥∥A∥∥∥
1

= max
j=1,...,d

d∑
i=1
|aij|, maximum column sum

∥∥∥A∥∥∥
∞

= max
i=1,...,d

d∑
j=1
|aij|, maximum row sum.

To remember which way round it is, ‖A‖1 is the maximum column sum and the
subscript 1 looks like a column. Don’t forget the absolute-value signs!

Proof. We prove that ∥∥∥A∥∥∥
∞

= max
i

∑
j

|aij| =: f(A).

The argument for ‖A‖1 is similar and addressed on the problem sheet. We divide and
conquer, first showing that ‖A‖∞ ≤ f(A) and then ‖A‖∞ ≥ f(A).
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To show that ‖A‖∞ ≤ f(A), consider x ∈ Rd with ‖x‖∞ = 1. Then, |xi| ≤ 1 for
all i = 1, . . . , d and hence∣∣∣∣∣∣

d∑
j=1

aijxj

∣∣∣∣∣∣ ≤
d∑
j=1

∣∣∣aijxj∣∣∣ ≤ d∑
j=1
|aij| ≤ f(A).

That is, the ith entry of Ax is smaller (in absolute value) than f(A). Hence, ‖Ax‖∞ ≤
f(A).

To show that ‖A‖∞ ≥ f(A), suppose that f(A) = ∑
j |aij| (i.e., row i has the

maximum sum). Let

xj :=
{

+1, aij ≥ 0,
−1, aij < 0.

Clearly then ‖x‖∞ = 1 and

Ax =



×
×
...∑

j aijxj
×

 =



×
×
...∑
j|aij|
×

 =



×
×
...

f(A)
×

 ,

where we write the ith row only. The magnitude of the largest entry of Ax is at least
f(A) and ∥∥∥Ax

∥∥∥
∞
≥ f(A).

Both these operator norms are very easy to compute.

Example 5.5. Let

A =

3 −8 −9
1 −2 0
9 −14 6

 .
Then ‖A‖1 = max{13, 24, 15} = 24 and ‖A‖∞ = max{20, 3, 29} = 29.

The matrix 2-norm ‖A‖2 induced by the Euclidean vector norm ‖x‖2 is much
harder to understand. We quote the following theorem:

Theorem 5.3. Let A be a d× d matrix; then∥∥∥A∥∥∥
2

=
√
ρ(ATA), (5.4)

where ρ(B) is the spectral radius or size of the largest eigenvalue defined by

ρ(B) := max{|λ| : λ is an eigenvalue of B so that Bu = λu for some u 6= 0}.

When A is symmetric, we have simply that∥∥∥A∥∥∥
2

= ρ(A).
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The proof of Eq. (5.4) is not covered. In the symmetric case, A = AT and, if λ is an
eigenvalue of A, then λ2 is an eigenvalue of ATA = A2. We expect ρ(ATA) = ρ(A)2.

Eigenvalues of large matrices are difficult to compute, though we can easily do it
for a 2× 2 example.

Example 5.6. Let

A =
[
3 1
0 1

]
, ATA =

[
9 3
3 2

]
.

The eigenvalues λ are the solutions of

det(A− λI) = det
∣∣∣∣∣9− λ 3

3 2− λ

∣∣∣∣∣ = (9− λ)(2− λ)− 9 = λ2 − 11λ+ 9 = 0.

The quadratic equation formula gives λ = (11 ±
√

121− 36)/2 and ‖A‖2 = ρ(A) =√
(11 +

√
85)/2.

Example 5.7. Recall the d× d finite-difference matrix

A =


2 −1
−1 2 −1

. . . . . . . . .

 .

We find the eigenvalues of A, which allows us to find ‖A‖2. Let h := 1/(d+ 1) and

uk := (sin kπh, sin 2kπh, . . . , sin dkπh)T ∈ Rd.

We show that uk is an eigenvector of A. The jth component of Auk is

(Auk)j = 2 sin(jkπh)− sin((j − 1)kπh)− sin((j + 1)kπh),

where we use sin((j − 1)kπh) = 0 for j = 1 and sin((j + 1)kπh) = sin(kπ) = 0 for
j = d.

The trig identity sin(X + Y ) = cosX sin Y + cosY sinX gives

(Auk)j = 2 sin(jkπh)−
(
cos(kπh) sin(jkπh)− cos(jkπh) sin(kπh)

)
−
(
cos(kπh) sin(jkπh) + cos(jkπh) sin(kπh)

)
= 2(1− cos kπh) sin(jkπh)
= λk × the jth component of uk,

where λk := 2(1− cos(kπh)). In other words, λk is an eigenvalue of A with eigenvector
uk. This gives d distinct eigenvalues for A. We conclude that

ρ(A) = max
{
λk : k = 1, . . . , d

}
= 2

(
1− cos dπ

d+ 1

)
.

As A is symmetric, Theorem 5.3 gives
∥∥∥A∥∥∥

2
=
√
ρ(ATA) = ρ(A) = 2

(
1− cos dπ

d+ 1

)
.
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5.3 Convergence of iterative methods
If A = D + L+ U (sum of diagonal and lower- and upper-triangular parts), the Jacobi
method is

Dxn+1 = −(L+ U)xn + b

and the Gauss–Seidel method is

(L+D)xn+1 = −Uxn + b.

If D is non-singular, both can be written

xn+1 = Txn + c

where

T = TJ := −D−1(L+ U), c = D−1b, Jacobi,
T = TGS := −(L+D)−1U, c = (L+D)−1b, Gauss–Seidel.

Lemma 5.1. Suppose that A and D are non-singular. Consider T = TJ or T = TGS.
Then x is the solution of Ax = b if and only if x = g(x) := Tx + c (i.e., x is a fixed
point of g; see Definition 4.1).

Proof. Elementary.

Theorem 5.4. Suppose that the conditions of Lemma 5.1 hold, so that Ax = b has a
unique solution x. Suppose that xn is a sequence in Rd generated by

xn+1 = Txn + c, (5.5)

for some initial vector x0. Then,∥∥∥xn − x
∥∥∥ ≤ ∥∥∥T∥∥∥n

op

∥∥∥x0 − x
∥∥∥,

where ‖T‖op is the operator norm associated to a vector norm ‖x‖.

Proof. We have xn+1 = Tx + c and x = Tx + c; then

xn+1 − x =
(
Txn − Tx

)
+
(
c− c

)
.

Apply the vector norm: ∥∥∥xn+1 − x
∥∥∥ =

∥∥∥Txn − Tx
∥∥∥.

Using Eq. (5.3), ∥∥∥xn+1 − x
∥∥∥ ≤ ∥∥∥T∥∥∥

op

∥∥∥xn − x
∥∥∥.

As simple induction argument shows that ‖xn − x‖ ≤ ‖T‖nop‖x0 − x‖.

Corollary 5.1. If ‖T‖op < 1, then xn converges to x as n→∞. The convergence is
linear (see Definition 4.2); that is, ‖xn+1 − x‖ ≤ K‖xn − x‖ for K = ‖T‖op < 1.
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When ‖T‖op is small, the convergence is more rapid and this is desirable in numerical
calculations.

In finite dimensions, it turns out that all norms are equivalent and any operator
norm can be used as long as ‖T‖op < 1.

An alternative characterisation of convergence can be given in terms of eigenvalues.

Corollary 5.2. The sequence xn given by xn+1 = Txn + c converges to the fixed point
x satisfying x = Tx + c for any x0 ∈ Rd if ρ(T ) < 1.

Proof. This is a corollary of Theorem 5.4 when T is symmetric as ρ(T ) = ‖T‖2.
Suppose for simplicity that T has d distinct eigenvalues λj with corresponding

eigenvectors uj, so that Tuj = λjuj. Then, uj is a basis for Rd and

x0 − x =
d∑
j=1

αjuj,

for some αj ∈ R. Let en = xn − x. Then, en+1 = Ten and

en = T ne0 = T n
d∑
j=1

αjuj =
d∑
j=1

αjT
nuj =

d∑
j=1

αjλ
nuj.

If ρ(T ) < 1 then all eigenvalues λ satisfy |λ| < 1. Hence, λn → 0 as n → ∞. Thus
en → 0 as n→∞ and the iterative method converges.

The case where the eigenvalues of T are not distinct is omitted.

Example 5.8. Consider 8 −1 0
1 5 2
0 2 4

x = b =

1
2
3

 .
The Jacobi iteration is8 0 0

0 5 0
0 0 4

xn+1 =

 0 1 0
−1 0 −2
0 −2 0

xn +

1
2
3


and

TJ =

8 0 0
0 5 0
0 0 4


−1  0 1 0
−1 0 −2
0 −2 0

 =

 0 1/8 0
−1/5 0 −2/5

0 −1/2 0

 .
Then, ∥∥∥TJ∥∥∥∞ = max

{1
8 ,

3
5 ,

1
2

}
= 3

5 , max row sum
∥∥∥TJ∥∥∥1

= max
{1

5 ,
5
8 ,

2
5

}
= 5

8 , max column sum.

The matrix norms are less than one and the Jacobi iteration converges for this example.
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Example 5.9 (finite-difference matrix). Recall the Jacobi iteration for the finite-
difference matrix Eq. (5.2). Then, xn+1 = Txn + c for

T = 1
2



0 1
1 . . . 1

. . . . . .
1

1 0

 , c = 1
2b.

Note that ‖T‖∞ = ‖T‖1 = 1 so that Corollary 5.1 does not apply. We work out the
eigenvalues similarly to Example 5.7. Let uk = [sin(kπh), sin(2kπh), . . . , sin(dkπh)]T
for h = 1/(d+ 1). Then, the jth component of Tuk is 1

2(sin(j−1)kπh) + sin(j+ 1)kπh)
and, by applying a trig identity, this is cos(kπh) sin(jkπh). Thus, λk = cos(kπh) for
k = 1, . . . , d are the eigenvalues of T and, as |λk| < 1, the convergence of the Jacobi
iteration follows for the finite-difference matrix.

Note however that ρ(T ) = max{cos(kπh) : k = 1, . . . , d} → 1 as h→ 0 as cos(πh) ≈
1 for h ≈ 0. This means when h is small the Jacobi iteration converges slowly. This is
a significant problem in applications where small h corresponds to accurate resolution
of the underlying physics. In other words, the more accurate our discretisation the
slower the Jacobi iteration is.

For convergence of Gauss–Seidel with the finite-difference matrix, see Problem E9.3.

5.4 Condition number
We’d like to estimate the error in the approximation when solving a linear system. Our
methods provide a computed value xc that we hope approximates the solution x of
Ax = b. We cannot evaluate a norm for xc − x as x is usually unknown. What we do
have is the residual defined by

r := Axc − b.

Note that
r := Axc − Ax = A(xc − x)

and xc − x = A−1r. Apply Eq. (5.3) to get∥∥∥xc − x
∥∥∥ ≤ ∥∥∥A−1

∥∥∥
op

∥∥∥r∥∥∥.
Furthermore, Ax = b gives ∥∥∥b∥∥∥ =

∥∥∥Ax
∥∥∥ ≤ ∥∥∥A∥∥∥

op

∥∥∥x∥∥∥.
Dividing the two expressions,

‖xc − x‖
‖A‖op ‖x‖

≤
‖A−1‖op ‖r‖
‖b‖

.

Rearranging we get
‖xc − x‖
‖x‖︸ ︷︷ ︸

relative error

≤
∥∥∥A−1

∥∥∥
op

∥∥∥A∥∥∥
op︸ ︷︷ ︸

condition number

‖r‖
‖b‖

.︸ ︷︷ ︸
relative residual
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Thus, the relative error is bounded by a constant times the relative residual. The
constant is known as the condition number :

Definition 5.5 (condition number). The condition number of a non-singular matrix
A is defined by

Cond(A) :=
∥∥∥A∥∥∥

op

∥∥∥A−1
∥∥∥

op
.

Each choice of operator norm ‖A‖op gives a different condition corresponding to the
choice of vector norm ‖x‖ above and Cond1(A), Cond2(A), Cond∞(A) denote the
condition numbers with respect to the 1-, 2-, and ∞-norms. Often κ(A) is used to
denote the condition number.

The condition number is a widely used measure of the difficulty of solving Ax = b.
When Cond(A) is large, it may be impossible to get accurate results.

Example 5.10. Returning to Eq. (1.1), we have

A =
[
ε 1
0 1

]
, A−1 = 1

ε

[
1 −1
0 ε

]
.

Suppose that 0 < ε < 1. Then, ‖A‖1 = 2 and ‖A−1‖1 = (1 + ε)/ε and hence
Cond1(A) = 2(1 + ε)/ε. This is large when ε is small and the matrix is ill-conditioned.
This reflects the sensitivity of x to changes in b found when solving Ax = b in (1.1).

Example 5.11 (Hilbert matrix). Refer back to Problem E1.2 where we performed
experiments with the Hilbert matrix A, which is the d × d matrix with (i, j) entry
1/(i + j − 1). We found that it was difficult to solve the linear system of equations
Ax = b for a given b ∈ Rd if d is moderately large (e.g., d = 10). numpy.linalg
provides the function cond for finding the condition number. We apply this to the
Hilbert matrix

>> d=4; A=hilb(d) % let A be the 4x4 Hilbert matrix

ans =

1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

>> cond(A,1) % give condition number wrt 1-norm

ans=

2.8375e+04

Repeating this experiment for d = 6 we find a condition number of 2.9070× 107; for
d = 8, the condition number is 3.3872 × 1010; for d = 10, the condition number is
3.534× 1013. Even for small systems (problem in real-world applications can be easily
have millions of unknowns), the condition number is extremely large.
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Second derivation of Cond(A)

Suppose that
Ax = b, (A+ ∆A)xc = b,

where ∆A can be thought as the effects of rounding error. Then,

x = A−1b = A−1(A+ ∆A)xc = xc + A−1∆Axc.

Hence,
x− xc = A−1∆Axc.

Applying norms, we find that∥∥∥x− xc

∥∥∥ ≤ ∥∥∥A−1
∥∥∥

op

∥∥∥∆A∥∥∥
op

∥∥∥xc

∥∥∥.
We can rewrite this in terms of the condition number:

‖x− xc‖
‖xc‖

≤ Cond(A)
‖∆A‖op

‖A‖op
.

The relative error is less than the condition number times the size of the relative change
in A.

Example 5.12 (finite-difference matrix). Let A be the d× d finite-difference matrix
of Example 5.2. Then, Cond2(A) is easy to find, because we know all the eigenvalues
of A. The eigenvalues of A−1 are simply λ−1 where λ is an eigenvalue of A. So, as A is
symmetric,

Cond2(A) =
∥∥∥A∥∥∥

2

∥∥∥A−1
∥∥∥

2
= ρ(A)ρ(A−1).

The eigenvalues are λk = 2(1 − cos(kπh)). Note that λk increases from λ1 = 2(1 −
cos(πh)) to λd = 2(1 − cos(dπ/(d + 1))). Then, ρ(A) = 2(1 − cos(dπ/(d + 1)) and
ρ(A−1) = 1/(2(1− cos(hπ))), and

Cond2(A) = 1− cos(dπ/(d+ 1))
1− cos(πh) →∞, as h ↓ 0.

In other words, the finite-difference matrix becomes more ill-conditioned as we make
h small and approximate the second derivate accurately. This is a common problem
when approximating PDEs numerically.
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